Mumbai University

Engineering

Mechanics

May 2019

Question Paper

Solution

Q1. Attempt Any Four:
(a) Find the resultant of forces as shown in fig.
(05 marks)

Solution:

$\sum \mathrm{F}_{x}=\left[(7)+\left(10 \cos \left(36^{\circ}\right)\right)+\left(10 \cos \left(72^{\circ}\right)\right)+\left(-3 \cos \left(72^{\circ}\right)\right)\right] \mathrm{kN}$
$\therefore \sum \mathrm{F}_{x}=17.25 \mathrm{kN}(\rightarrow)$
$\sum \mathrm{F}_{y}=\left[\left(10 \sin \left(36^{\circ}\right)\right)+\left(10 \sin \left(72^{\circ}\right)\right)+\left(3 \sin \left(72^{\circ}\right)\right)\right] \mathrm{kN}$
$\therefore \sum \mathrm{F}_{y}=18.24 \mathrm{kN}(\uparrow)$

Resultant $=\sqrt{\left(\sum \mathrm{F}_{x}\right)^{2}+\left(\sum \mathrm{F}_{y}\right)^{2}} \mathrm{kN}$

$$
\begin{aligned}
& =\sqrt{(17.25)^{2}+(18.24)^{2}} \mathrm{kN} \\
& =25.10 \mathrm{kN}(\square)
\end{aligned}
$$

\therefore Resultant $=25.10 \mathrm{kN}(\square)$

$$
\theta=\tan ^{-1}\left[\frac{\sum \mathrm{~F}_{y}}{\sum \mathrm{~F}_{x}}\right]=\tan ^{-1}\left[\frac{18.24}{17.25}\right]=46.6^{\circ}
$$

$\therefore \theta=46.6^{\circ}$

(b) If the cords suspended the two buckets in equilibrium position shown in Fig. Determine weight of bucket B if bucket A has a weight of 60 N .
(05 marks)

Solution:

$\mathrm{W}_{\mathrm{A}}=60 \mathrm{~N}$... $\{$ Given $\}$

Applying Lami's Theorem at point F ,
$\therefore \frac{\mathrm{W}_{\mathrm{A}}}{\sin \left(120^{\circ}\right)}=\frac{\mathrm{F}_{\mathrm{FC}}}{\sin \left(130^{\circ}\right)}=\frac{\mathrm{F}_{\mathrm{FE}}}{\sin \left(110^{\circ}\right)}$
$\therefore \mathrm{F}_{\mathrm{FC}}=\frac{\mathrm{W}_{\mathrm{A}}}{\sin \left(120^{\circ}\right)}\left(\sin \left(130^{\circ}\right)\right) \mathrm{N}=\frac{60}{\sin \left(120^{\circ}\right)}\left(\sin \left(130^{\circ}\right)\right) \mathrm{N}$
$\therefore \mathrm{F}_{\mathrm{FC}}=53.07 \mathrm{~N}$

Applying Lami's Theorem at point C,
$\therefore \frac{\mathrm{W}_{\mathrm{B}}}{\sin \left(135^{\circ}\right)}=\frac{\mathrm{F}_{\mathrm{CD}}}{\sin \left(70^{\circ}\right)}=\frac{\mathrm{F}_{\mathrm{CF}}}{\sin \left(155^{\circ}\right)}$
$\therefore \mathrm{W}_{\mathrm{B}}=\frac{\mathrm{F}_{\mathrm{CF}}}{\sin \left(155^{\circ}\right)}\left(\sin \left(135^{\circ}\right)\right) \mathrm{N}=\frac{53.07}{\sin \left(155^{\circ}\right)}\left(\sin \left(135^{\circ}\right)\right) \mathrm{N}$
$\therefore \mathrm{W}_{\mathrm{B}}=88.79 \mathrm{~N}$
\therefore The weight of the bucket $\mathrm{B}=88.79 \mathrm{~N}$

(c) Two blocks $\mathrm{A}=100 \mathrm{~N}$ and $\mathrm{B}=\mathbf{1 5 0} \mathrm{N}$ are resting on the ground as shown in fig. Find the minimum weight P in the pan so that body A starts. Assume pulley to be mass less and frictionless.

Solution:

The FBD is shown below,

Let the tension in the string be ' T ' N
Let the normal force between the two blocks A and B be $\mathrm{N}_{1} \mathrm{~N}$
Let the normal force between block B and ground be $\mathrm{N}_{2} \mathrm{~N}$
For block to just start to move, the friction force acting on block A will be backwards
And on block B the same force will be forwards.
The friction force between block B and ground will be backwards on block B.
\therefore Applying equilibrium conditions on Block B,
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore\left(0.3 \mathrm{~N}_{1}\right)-\left(0.1 \mathrm{~N}_{2}\right)=0$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{N}_{2}-150-\mathrm{N}_{1}=0$
$\therefore-\mathrm{N}_{1}+\mathrm{N}_{2}=150$

From (1) and (2)
$\mathrm{N}_{1}=75 \mathrm{~N}$ and $\mathrm{N}_{2}=225 \mathrm{~N}$
\therefore Applying equilibrium conditions on Block A,
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore\left(\mathrm{T} \cos \left(30^{\circ}\right)\right)-\left(0.3 \mathrm{~N}_{1}\right)=0$
$\therefore\left(\operatorname{Tcos}\left(30^{\circ}\right)\right)-(0.3(75))=0$
$\therefore \mathrm{T}=25.98 \mathrm{~N}$
On block P,
$W_{\mathrm{P}}=\mathrm{T}$
\therefore The minimum weight P in the pan so that block A just starts $=25.98 \mathrm{~N}$
(d) The motion of jet plane while travelling along a runway is defined by the v-t graph as shown in Fig. Construct the s-t graph for the motion. The plane starts from rest.
(05 marks)

Solution: The required graph is:

Explanation :

For S-T graph
$\int d s=\int v \cdot d t=$ Area under the graph under time interval
Since the object is at rest initially, $S_{0}=0 \mathrm{~m}$
For time 0 to 5 seconds
$\int_{0}^{S_{5}} d s=\int_{0}^{5} v \cdot d t=$ Area under graph from 0 to 5 seconds $=\frac{1}{2}(5)(20) \mathrm{m}$
$\therefore \mathrm{S}_{5}-0=50 \mathrm{~m} \quad \therefore \mathrm{~S}_{5}=50 \mathrm{~m}$
$\int_{\mathrm{S}_{5}}^{\mathrm{S}_{20}} d s=\int_{5}^{20} v \cdot d t=$ Area under graph from 5 to 20 seconds $=(20-5)(20) \mathrm{m}$
$\therefore \mathrm{S}_{20}-\mathrm{S}_{5}=300 \mathrm{~m} \quad \therefore \mathrm{~S}_{20}=350 \mathrm{~m}$
$\int_{S_{20}}^{S_{30}} d s=\int_{20}^{30} v \cdot d t=$ Area under graph from 20 to 30 seconds $=\left[(30-20)(20)+\frac{1}{2}(30-20)(60-20)\right] \mathrm{m}$
$\therefore \mathrm{S}_{30}-\mathrm{S}_{20}=400 \mathrm{~m} \quad \therefore \mathrm{~S}_{30}=750 \mathrm{~m}$
(e) A 50 kg block is kept on the top of a 15° slopping surface is pushed down the plane with an initial velocity of $\mathbf{2 0} \mathbf{~ m} / \mathrm{s}$. If $\mu_{k}=0.4$, determine the acceleration of the block.
(05 marks)
Solution: The FBD is,

On the block,
$N=50 \mathrm{~g} \sin \left(15^{\circ}\right)=50(9.8) \sin \left(15^{\circ}\right)$
$\therefore N=126.82 \mathrm{~N}$
$50 \mathrm{gsin}\left(15^{\circ}\right)-0.4(N)=50(a)$ where a is acceleration of the block
$50(9.8) \sin \left(15^{\circ}\right)-0.4(126.82)=50(a)$
$\therefore a=1.52 \mathrm{~m} / \mathrm{s}^{2}$
\therefore The acceleration of the block $=1.52 \mathrm{~m} / \mathrm{s}^{2}$

Q2. Attempt:
(a) Four forces acting on a rectangle in the same plane as shown in fig. below. Find magnitude and direction of resultant force. Also find intersection of line of action of resultant with X and Y axes, assuming D as origin.
(06 marks)

Solution:

Finding $\angle \mathrm{ABD}$
$\angle \mathrm{ABD}=\tan ^{-1}\left[\frac{\mathrm{AD}}{\mathrm{AB}}\right]=\tan ^{-1}\left(\frac{0.5}{1.2}\right)$
$\therefore \angle \mathrm{ABD}=22.62^{\circ}$
\therefore The angle made by 1300 N force with horizontal is 22.62°
$\sum F_{x}=\left[1300 \cos \left(22.62^{\circ}\right)+600 \cos \left(40^{\circ}\right)-800\right] N$
$\sum \mathrm{F}_{\mathrm{x}}=859.63 \mathrm{~N}(\rightarrow)$
$\sum \mathrm{F}_{\mathrm{y}}=\left[600 \sin \left(40^{\circ}\right)+1500-1300 \sin \left(22.62^{\circ}\right)\right] \mathrm{N}$
$\sum \mathrm{F}_{\mathrm{y}}=1385.67 \mathrm{~N}(\uparrow)$

Resultant $=\sqrt{\left(\sum \mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\sum \mathrm{F}_{\mathrm{y}}\right)^{2}} \mathrm{~N}$
$=\sqrt{859.63^{2}+1385.67^{2}} \mathrm{~N}$
$=1630.66 \mathrm{~N}(\square)$
\therefore Resultant $=1630.66 \mathrm{~N}(\square)$
$\theta=\tan ^{-1}\left[\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{F}_{\mathrm{x}}}\right]=\tan ^{-1}\left(\frac{1385.67}{859.63}\right)=58.19^{\circ}$
$\therefore \theta=58.19^{\circ}$
$\sum \mathrm{M}_{0}=(1500)(1.2)+\left(1300 \cos \left(22.62^{\circ}\right)(0.5)-\left(1300 \sin \left(22.62^{\circ}\right)(1.2)\right)-(800)(0.25)\right.$
$\therefore \sum \mathrm{M}_{0}=1600 \mathrm{~N}-\mathrm{m}$
$X=\frac{\sum M_{0}}{\sum \mathrm{~F}_{\mathrm{y}}}=\frac{1600}{1385.67}=1.15 \mathrm{~m}$
$\mathrm{Y}=\frac{\sum \mathrm{M}_{0}}{\sum \mathrm{~F}_{\mathrm{x}}}=\frac{1600}{859.63}=1.86 \mathrm{~m}$
$\therefore \mathrm{X}=1.15 \mathrm{~m}$ and $\mathrm{Y}=1.86 \mathrm{~m}$
(b) Two spheres A and B of weight 1000 N and 750 N respectively are kept as shown in fig. Determine the reactions at all contact points $1,2,3$ and 4 . Radius of $A=400 \mathrm{~mm}$ and $B=\mathbf{3 0 0} \mathbf{m m}$.
(08 marks)

Solution:

Applying equilibrium conditions on ball A
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore \mathrm{R}_{3} \cos \left(60^{\circ}\right)-\mathrm{R}_{4} \cos \left(30^{\circ}\right)=0$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{R}_{3} \sin \left(60^{\circ}\right)+\mathrm{R}_{4} \sin \left(30^{\circ}\right)-1000=0$
$\therefore \mathrm{R}_{3} \sin \left(60^{\circ}\right)+\mathrm{R}_{4} \sin \left(30^{\circ}\right)=1000$
From (1) and (2)
$\mathrm{R}_{3}=866.03 \mathrm{~N}$ and $\mathrm{R}_{4}=500 \mathrm{~N}$

Applying equilibrium conditions on ball B
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore \mathrm{R}_{1}-\mathrm{R}_{3} \cos \left(60^{\circ}\right)=0$
$\therefore \mathrm{R}_{1}=\mathrm{R}_{3} \cos \left(60^{\circ}\right)=(866.03) \cos \left(60^{\circ}\right)$
$\therefore \mathrm{R}_{1}=433.02 \mathrm{~N}$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{R}_{2}-\mathrm{R}_{3} \sin \left(60^{\circ}\right)-750=0$
$\mathrm{R}_{2}-(866.03) \sin \left(60^{\circ}\right)-750=0$
$\therefore \mathrm{R}_{2}=1500 \mathrm{~N}$
(c) Two smooth balls A (mass 3 kg) and B (mass 4 kg) are moving with velocities $25 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{~m} / \mathrm{s}$ respectively. Before impact, the directions of velocity of two balls are 30° and 60° with the line joining the centres as shown in Fig. If $e=0.8$, find magnitude and direction of velocities of the balls after impact.
(06 marks)

Solution:

Let u_{A} and u_{B} be the initial velocities of balls A and B respectively,
Let v_{A} and v_{B} be the final velocities of balls A and B respectively,
$\therefore \mathrm{u}_{\mathrm{A}}=25 \sin \left(30^{\circ}\right) i+25 \cos \left(30^{\circ}\right) j$
$\therefore \mathrm{u}_{\mathrm{B}}=-40 \sin \left(60^{\circ}\right) i-40 \cos \left(30^{\circ}\right) j$
Let $v_{A x}$ and $v_{A y}$ be the x and y components of velocity of ball A resp,
Let $v_{B x}$ and $v_{B y}$ be the x and y components of velocity of ball B resp,
Applying Law of conservation of linear momentum along y direction,
$\mathrm{m}_{\mathrm{A}} \mathrm{u}_{\mathrm{Ay}}+\mathrm{m}_{\mathrm{B}} \mathrm{u}_{\mathrm{By}}=\mathrm{m}_{\mathrm{A}} \mathrm{v}_{\mathrm{Ay}}+\mathrm{m}_{\mathrm{B}} \mathrm{v}_{\mathrm{By}}$
$\therefore 3\left(25 \cos \left(30^{\circ}\right)\right)+4\left(-40 \cos \left(60^{\circ}\right)\right)=3 \mathrm{v}_{\text {Ау }}+4 \mathrm{v}_{\text {By }}$
$\mathrm{e}=\frac{\mathrm{v}_{\text {By }}-\mathrm{v}_{\text {Ay }}}{\mathrm{u}_{\text {Ay }}-\mathrm{u}_{\text {By }}}=0.8=\frac{\mathrm{v}_{\text {By }}-\mathrm{v}_{\text {Ay }}}{25 \cos \left(30^{\circ}\right)-\left(-40 \cos \left(60^{\circ}\right)\right)}$
$0.8\left[25 \cos \left(30^{\circ}\right)-\left(-40 \cos \left(60^{\circ}\right)\right)\right]=-\mathrm{v}_{\mathrm{Ay}}+\mathrm{v}_{\mathrm{By}}$

From (1) and (2)
$\mathrm{v}_{\text {Ay }}=-21.19 \mathrm{~m} / \mathrm{s}_{\mathrm{By}}=12.13 \mathrm{~m} / \mathrm{s}$
The velocities along the perpendicular to line of action remain unchanged,
$\therefore \mathrm{v}_{\mathrm{Ax}}=25 \sin \left(30^{\circ}\right)=12.5 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{\mathrm{Bx}}=-40 \sin \left(60^{\circ}\right)=-34.64 \mathrm{~m} / \mathrm{s}$

$$
\therefore \begin{aligned}
& \mathrm{v}_{\mathrm{A}}=[12.5 i-21.19 j] \mathrm{m} / \mathrm{s} \\
& \mathrm{v}_{\mathrm{B}}=[-34.64 i+12.13 j] \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Q3. Attempt:
(a) Find the centroid of shaded area as shown in fig.
(08 marks)

Solution:

	Shape	Area(in mm ${ }^{\text {2 }}$)	$\underset{\text { Coordinate }}{ }$	$\mathrm{Y}-$ Coordinate	AX	AY
1.	Rectangle	$\begin{aligned} & =(35)(20) \\ & =700 \end{aligned}$	$=10$	$=17.5$	$=7000$	$=12250$
2.	Quarter Circle	$\begin{aligned} & =-\frac{\pi(20)^{2}}{4} \\ & =-314.16 \end{aligned}$	$\begin{aligned} & =\frac{4(20)}{3 \pi} \\ & =8.49 \end{aligned}$	$\begin{aligned} & =\frac{4(20)}{3 \pi} \\ & =8.49 \end{aligned}$	$\begin{array}{\|l\|} \hline= \\ -2667.22 \end{array}$	$\begin{aligned} & \hline= \\ & -2667.22 \end{aligned}$
3.	$\begin{aligned} & \begin{array}{l} \text { Triangle } \\ (\mathrm{ht}=15 \mathrm{~mm}, \\ \mathrm{bs}=10 \mathrm{~mm}) \end{array} \end{aligned}$	$\begin{aligned} & =-\frac{1}{2}(10)(15) \\ & =-75 \end{aligned}$	$\begin{aligned} & =\frac{10}{3} \\ & =3.33 \end{aligned}$	$\begin{aligned} & =35-\frac{15}{3} \\ & =30 \end{aligned}$	$=-250$	$=-2250$
4.	$\begin{aligned} & \hline \begin{array}{l} \text { Triangle } \\ (\mathrm{ht}=10 \mathrm{~mm}, \\ \mathrm{bs}=10 \mathrm{~mm}) \end{array} \end{aligned}$	$\begin{aligned} & =-\frac{1}{2}(10)(10) \\ & =-50 \end{aligned}$	$\begin{aligned} & =20-\frac{10}{3} \\ & =16.67 \end{aligned}$	$\begin{aligned} & =35-\frac{10}{3} \\ & =31.67 \end{aligned}$	$=-833.5$	$\begin{aligned} & = \\ & -1583.5 \end{aligned}$

$\sum \mathrm{A}=700-314.16-75-50 \mathrm{~mm}^{2}$
$\therefore \sum \mathrm{A}=260.84 \mathrm{~mm}^{2}$
$\sum \mathrm{AX}=7000-2667.22-250-833.5 \mathrm{~mm}^{2}$
$\therefore \sum \mathrm{AX}=3249.28 \mathrm{~mm}^{2}$
$\sum \mathrm{AY}=12250-2667.22-2250-1583.5 \mathrm{~mm}^{2}$
$\therefore \sum \mathrm{AY}=5749.28 \mathrm{~mm}^{2}$
$\mathrm{X}=\frac{\sum \mathrm{AX}}{\sum \mathrm{A}}=\frac{3249.28}{260.84}=12.46 \mathrm{~mm}$
$\mathrm{Y}=\frac{\sum \mathrm{AY}}{\sum \mathrm{A}}=\frac{5749.28}{260.84}=22.04 \mathrm{~mm}$

Centroid is,
$\therefore \mathrm{X}=12.46 \mathrm{~mm}$ and $\mathrm{Y}=22.04 \mathrm{~mm}$
(b) Three forces F_{1}, F_{2} and F_{3} act at origin $O . F_{1}=70 \mathrm{~N}$ acting along $\mathbf{O A}$, where $\mathbf{A}(\mathbf{2}, \mathbf{1}$, 3). $\mathrm{F}_{2}=80 \mathrm{~N}$ acting along $\mathbf{O B}$, where $\mathbf{B}(\mathbf{- 1}, \mathbf{2}, \mathbf{0}) . \mathrm{F}_{3}=100 \mathrm{~N}$ acting along $\mathbf{O C}$, where $\mathbf{C}(4,-1,5)$. Find the resultant of these concurrent forces.

Solution:

$\overline{\mathrm{F}}_{1}=70[2 i+j+3 k] \mathrm{N}$
$\overline{\mathrm{F}_{2}}=80[-i+2 j] \mathrm{N}$
$\overline{\mathrm{F}_{3}}=100[4 i-j+5 k] \mathrm{N}$
$\overline{\mathrm{F}_{\text {net }}}=\overline{\mathrm{F}_{1}}+\overline{\mathrm{F}_{2}}+\overline{\mathrm{F}_{3}} \mathrm{~N}$
$\therefore \overline{\mathrm{F}_{\mathrm{net}}}=[70[2 i+j+3 k]+80[-i+2 j]+100[4 i-j+5 k]] \mathrm{N}$
$\therefore \overline{\mathrm{F}_{\text {net }}}=[460 i+130 j+710 k] \mathrm{N}$
(c) A 4 kg collar is attached to a spring, slides on a smooth bent rod ABCD. The spring has constant $k=500 \mathrm{~N} / \mathrm{m}$ and is undeformed when the collar is at ' C '. If the collar is released from rest at A. Determine the velocity of collar, when it passes through ' B ' and ' C '. Also find the distance moved by collar beyond ' C ' before it comes to rest again. Refer fig.
(06 marks)

Solution:

$l(O B)=\sqrt{0.5^{2}+0.5^{2}}=0.5 \sqrt{2}=0.707 \mathrm{~m}$
Natural Length $\left(l_{0}\right)=0.5 \mathrm{~m}$
$x_{\mathrm{A}}=\mathrm{OA}-l_{0}=1-0.5=0.5 \mathrm{~m}$
$x_{\mathrm{B}}=\mathrm{OB}-l_{0}=0.707-0.5=0.207 \mathrm{~m}$
Applying work energy theorem from A to B
$\mathrm{W}_{g}+\mathrm{W}_{s p}=\Delta K$
$m g h+\frac{1}{2} k\left(x_{A}{ }^{2}-x_{B}{ }^{2}\right)=\frac{1}{2} m\left(v_{B}{ }^{2}-v_{A}{ }^{2}\right)$
$4(9.8)(0.5)+\frac{1}{2}(500)\left(0.5^{2}-0.207^{2}\right)=\frac{1}{2}(4)\left(v_{B}{ }^{2}-0^{2}\right)$
$\therefore v_{B}=5.97 \mathrm{~m} / \mathrm{s}$

Applying work energy theorem from B to C,

$$
\begin{aligned}
& \mathrm{W}_{g}+\mathrm{W}_{s p}=\Delta K \\
& m g h+\frac{1}{2} k\left(x_{B}^{2}-x_{C}^{2}\right)=\frac{1}{2} m\left(v_{C}{ }^{2}-v_{B}^{2}\right) \\
& 0+\frac{1}{2}(500)\left(0.207^{2}-0^{2}\right)=\frac{1}{2}(4)\left(v_{C}^{2}-5.97^{2}\right) \\
& \therefore v_{C}=6.40 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Applying work energy theorem from C to D ,
$\mathrm{W}_{g}+\mathrm{W}_{s p}=\Delta K$
$m g h+\frac{1}{2} k\left(x_{C}{ }^{2}-x_{D}{ }^{2}\right)=\frac{1}{2} m\left(v_{D}{ }^{2}-v_{C}{ }^{2}\right)$
$0+\frac{1}{2}(500)\left(0^{2}-x_{D}{ }^{2}\right)=\frac{1}{2}(4)\left(0^{2}-6.4^{2}\right)$
$\therefore x_{D}=0.572 \mathrm{~m}$
$l(O D)=l_{0}+x_{D}=0.5+0.572=1.07 \mathrm{~m}$
$\therefore \mathrm{CD}=\sqrt{O D^{2}-O C^{2}}=\sqrt{1.07^{2}-0.5^{2}}=0.946 \mathrm{~m}$
$\therefore \mathrm{CD}=0.946 \mathrm{~m}$

Q4. Attempt:
(a) Find the support reactions of beam loaded as shown in fig.
(08 marks)

Solution: The FBD is,

$\sum M_{B}=0$
$\therefore-\mathrm{V}_{\mathrm{A}}(6)+12(4)+10(1.5)+20 \cos \left(40^{\circ}\right)(2)+20 \sin \left(40^{\circ}\right)(2)=0$
$\therefore \mathrm{V}_{\mathrm{A}}=19.89 \mathrm{kN}(\uparrow)$
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore \mathrm{H}_{\mathrm{B}}-20 \cos \left(40^{\circ}\right)=0$
$\therefore \mathrm{H}_{\mathrm{B}}=15.32 \mathrm{kN}(\rightarrow)$
$\sum \mathrm{F}_{\mathrm{Y}}=0$
$\therefore \mathrm{V}_{\mathrm{A}}-12-10+\mathrm{V}_{\mathrm{B}}+20 \sin \left(40^{\circ}\right)=0$
$19.89-12-10+\mathrm{V}_{\mathrm{B}}+20 \sin \left(40^{\circ}\right)=0$
$\therefore \mathrm{V}_{\mathrm{B}}=-10.75 \mathrm{kN}=10.75 \mathrm{kN}(\downarrow)$
(b) Determine the moment to be applied at \mathbf{C} for equilibrium of pin jointed mechanism. Use virtual work method. Refer Fig.
(06 marks)

Solution:

From line BD:

Active Forces	Coordinates	Virtual Displacement
F_{H}	3	$5 \cos \theta$
$\mathrm{~F}_{\mathrm{V}}$	0	0

For maintaining equilibrium,
By Principal of virtual work,
$\sum \mathrm{V} . \mathrm{W}=0$
$\therefore \mathrm{F}_{\mathrm{V}}(0)+\mathrm{F}_{\mathrm{H}}(5 \cos \theta)-20=0$
$\therefore \mathrm{F}_{\mathrm{H}}=\frac{20}{5 \cos \theta}=4 \sec \theta=\frac{20}{3} \mathrm{kN}$
Hence the moment to be applied at point C is
$\mathrm{M}=\frac{20}{3}(3)=20 \mathrm{kNm}$
(c) A slider crank mechanism is shown in Fig. The crank OA rotates anticlockwise at $100 \mathrm{rad} / \mathrm{s}$. Find the angular velocity of rod AB and the velocity of the slider at B.
(06 marks)

Solution: Finding ICR,

By sine rule,
$\frac{200}{\sin \left(20^{\circ}\right)}=\frac{\mathrm{AB}}{\sin \left(40^{\circ}\right)}=\frac{\mathrm{OB}}{\sin \left(120^{\circ}\right)}$
$\therefore \mathrm{AB}=375.88 \mathrm{~mm}$ and $\mathrm{OB}=506.42 \mathrm{~mm}$
By sine rule,
$\frac{\mathrm{AB}}{\sin \left(50^{\circ}\right)}=\frac{\mathrm{IA}}{\sin \left(70^{\circ}\right)}=\frac{\mathrm{IB}}{\sin \left(60^{\circ}\right)}$
$\therefore \mathrm{IA}=461.09 \mathrm{~mm}$ and $\mathrm{IB}=424.94 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{A}}=\mathrm{W}_{\mathrm{OA}} . \mathrm{OA}$
$\therefore \mathrm{V}_{\mathrm{A}}=(100) \frac{200}{1000}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}_{\mathrm{I}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{IA}}=\frac{20}{0.46}=43.48 \mathrm{rad} / \mathrm{s}$
$\mathrm{V}_{\mathrm{B}}=\mathrm{W}_{\mathrm{I}} \times \mathrm{IB}=43.48(0.42)=18.26 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}_{\mathrm{I}}=43.48 \mathrm{rad} / \mathrm{s}$
$\mathrm{V}_{\mathrm{B}}=18.26 \mathrm{~m} / \mathrm{s}$

Q5. Attempt:
(a) Find the forces in the members BC, BE and AE by method of sections and remaining members by method of joints.
(08 marks)

Solution:

By method of section, cutting the given truss along AE, BE and BC

Consider the right part,
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore-\mathrm{F}_{\mathrm{EA}} \cos \left(30^{\circ}\right)-\mathrm{F}_{\mathrm{BC}}-\mathrm{F}_{\mathrm{BE}} \sin \left(60^{\circ}\right)+1200=0$
$\sum \mathrm{F}_{\mathrm{Y}}=0$
$\therefore \mathrm{F}_{\mathrm{EA}} \sin \left(30^{\circ}\right)-\mathrm{F}_{\mathrm{BE}} \cos \left(60^{\circ}\right)-1200-900=0$
Let the length of hypotenuse be l
$\sum \mathrm{M}_{\mathrm{E}}{ }^{\mathrm{F}}=0$
$-\mathrm{F}_{\mathrm{BC}}\left(l \sin \left(30^{\circ}\right)\right)+1200\left(l \sin \left(30^{\circ}\right)\right)-1200\left(l \cos \left(30^{\circ}\right)\right)=0$
$\therefore \mathrm{F}_{\mathrm{BC}}=-878.46 \mathrm{~N}$
\therefore Put F_{BC} in (1)
$-\mathrm{F}_{\text {EA }} \cos \left(30^{\circ}\right)-(-878.46)-\mathrm{F}_{\mathrm{BE}} \sin \left(60^{\circ}\right)+1200=0$
$\mathrm{F}_{\mathrm{EA}}=3300 \mathrm{~N}$
$\mathrm{~F}_{\mathrm{BE}}=-900 \mathrm{~N}$
By method of joints,

At point D
$\sum \mathrm{F}_{\mathrm{Y}}=0$
$\therefore-1200+\mathrm{F}_{\mathrm{ED}} \sin \left(30^{\circ}\right)=0$
$\therefore \mathrm{F}_{\mathrm{ED}}=2400 \mathrm{~N}$
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore-\mathrm{F}_{\mathrm{CD}}-\mathrm{F}_{\mathrm{ED}} \cos \left(30^{\circ}\right)=0$
$\therefore \mathrm{F}_{\mathrm{CD}}=-2078.46 \mathrm{~N}$

At point C
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore \mathrm{F}_{\mathrm{CD}}-\mathrm{F}_{\mathrm{BC}}+1200=0$
$\therefore-2078.46-\mathrm{F}_{\mathrm{BC}}+1200=0$
$\therefore \mathrm{F}_{\mathrm{BC}}=-878.46 \mathrm{~N}$
$\sum \mathrm{F}_{\mathrm{Y}}=0$
$\therefore-900+\mathrm{F}_{\mathrm{CE}}=0$
$\therefore \mathrm{F}_{\mathrm{CE}}=900 \mathrm{~N}$

At point E
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore-\mathrm{F}_{\mathrm{AE}} \cos \left(30^{\circ}\right)-\mathrm{F}_{\mathrm{BE}} \sin \left(60^{\circ}\right)+\mathrm{F}_{\mathrm{ED}} \cos \left(30^{\circ}\right)=0$
$\therefore-\mathrm{F}_{\mathrm{AE}} \cos \left(30^{\circ}\right)-\mathrm{F}_{\mathrm{BE}} \sin \left(60^{\circ}\right)+2400 \cos \left(30^{\circ}\right)=0$
$\sum \mathrm{F}_{\mathrm{Y}}=0$
$\therefore \mathrm{F}_{\mathrm{AE}} \sin \left(30^{\circ}\right)-\mathrm{F}_{\mathrm{BE}} \cos \left(60^{\circ}\right)-\mathrm{F}_{\mathrm{CE}}-\mathrm{F}_{\mathrm{ED}} \sin \left(30^{\circ}\right)=0$
$\therefore \mathrm{F}_{\mathrm{AE}} \sin \left(30^{\circ}\right)-\mathrm{F}_{\mathrm{BE}} \cos \left(60^{\circ}\right)-900-2400 \sin \left(30^{\circ}\right)=0$
$\mathrm{F}_{\mathrm{AE}}=3300 \mathrm{~N}$
$\mathrm{F}_{\mathrm{BE}}=900 \mathrm{~N}$
At point A
$\sum \mathrm{F}_{\mathrm{Y}}=0$
$\therefore-\mathrm{F}_{\mathrm{AB}}-\mathrm{F}_{\mathrm{AE}} \cos \left(60^{\circ}\right)=0$
$\therefore \mathrm{F}_{\mathrm{AB}}=-3300 \cos \left(60^{\circ}\right)$
$\therefore \mathrm{F}_{\mathrm{AB}}=-1650 \mathrm{~N}$

Member	Force Magnitude (in N)	Nature of Force
AB	1650	Compressive
BE	900	Tensile
BC	878.46	Compressive
AE	3300	Tensile
CE	900	Tensile
ED	2400	Tensile
CD	2078.46	Compressive

(b) A particle moves in $\mathbf{x}-\mathbf{y}$ plane and it's is given by $r=(3 t) i+\left(4 t-3 t^{2}\right) j$, where \mathbf{r} is the position vector of particle in metres at time t sec. Find the radius of curvature of the path and normal and tangential components of acceleration when it crosses X-axis region.
(06 marks)
Solution:

$$
\bar{r}=\left[(3 t) i+\left(4 t-3 t^{2}\right) j\right] \mathrm{m}
$$

When it crosses the x axis, the y coordinate is 0
$\therefore\left(4 t-3 t^{2}\right)=0$
$\therefore t=0 s$ or $t=\frac{4}{3} s$
$\bar{v}=\frac{d \bar{r}}{d t}=\frac{d}{d t}\left[(3 t) i+\left(4 t-3 t^{2}\right) j\right]$
$\therefore \bar{v}=[3 i+(4-6 t) j] \mathrm{m} / \mathrm{s}$
\therefore At $\mathrm{t}=\frac{4}{3} s$,
$\bar{v}=[3 i-4 j] \mathrm{m} / \mathrm{s}=5 \angle-53.13^{\circ} \mathrm{m} / \mathrm{s}$
$\bar{a}=\frac{d \bar{v}}{d t}=\frac{d}{d t}[3 i+(4-6 t) j] \mathrm{m} / \mathrm{s}^{2}$
$\therefore \bar{a}=-6 j \mathrm{~m} / \mathrm{s}^{2}$
Radius of curvature $(\rho)=\frac{v^{3}}{\left|v_{x} a_{y}-v_{y} a_{x}\right|} \mathrm{m}$
$\therefore \rho=\frac{5^{3}}{|(3)(-6)-(-4)(0)|}=\frac{125}{|-18|}=6.94 \mathrm{~m}$
$\mathrm{a}_{N}=\frac{v^{2}}{\rho}=\frac{5^{2}}{6.94}=\frac{25}{6.94}=3.6 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{T}=\sqrt{a^{2}-a_{N}{ }^{2}}=\sqrt{6^{2}-3.6^{2}}=4.8 \mathrm{~m} / \mathrm{s}^{2}$

\therefore| Radius of curvature $=6.94 \mathrm{~m}$ and |
| :--- |
| Normal component of acceleration $=3.6 \mathrm{~m} / \mathrm{s}^{2}$ and |
| Tangential component of acceleration $=4.8 \mathrm{~m} / \mathrm{s}^{2}$ |

(c) C is a uniform cylinder to which a rod $A B$ is pinned at A and the other end of the rod is moving along a vertical wall as shown in fig. If the end B of the rod is moving upwards along the wall with a speed of $3.3 \mathrm{~m} / \mathrm{s}$ find the angular velocity of wheel and rod assuming that cylinder is rolling without slipping.
(06 marks)

Solution:

Locating the ICR,

$\mathrm{IB}=1.8 \cos \left(30^{\circ}\right)=1.56 \mathrm{~m}$ and $\mathrm{IA}=1.8 \sin \left(30^{\circ}\right)=0.9 \mathrm{~m}$
$\mathrm{V}_{\mathrm{B}}=3.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}_{\mathrm{I}}=\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{IB}}=\frac{3.3}{1.56}=2.12 \mathrm{r} / \mathrm{s}$
$\mathrm{V}_{\mathrm{A}}=\mathrm{W}_{\mathrm{I}} \times(\mathrm{IA})=(2.12)(0.9)$
$\therefore \mathrm{V}_{\mathrm{A}}=1.91 \mathrm{~m} / \mathrm{s}$
$\therefore \mathrm{W}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{R}}=\frac{1.91}{0.3}=6.37 \mathrm{r} / \mathrm{s}$

$$
\therefore \begin{aligned}
& \text { The angular velocity of wheel }=6.37 \mathrm{r} / \mathrm{s} \text { and } \\
& \text { the velocity of the rod }=1.91 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q6.Attempt:
(a) $\mathbf{A} 100 \mathrm{~N}$ uniform rod AB is held in position as shown. If $\mu=0.15$ at \mathbf{A} and B calculate range of value of \mathbf{P} for which equilibrium is maintained.

Solution:

Let N_{A} and N_{B} be the normal reactions at A and B respectively
For minimum value of P, FBD is,

For equilibrium,
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore \mu \mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}}+\mathrm{P}=0$
$\therefore 0.15 \mathrm{~N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}}+\mathrm{P}=0$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{N}_{\mathrm{A}}+\mu \mathrm{N}_{\mathrm{B}}-100=0$
$\therefore \mathrm{N}_{\mathrm{A}}+0.15 \mathrm{~N}_{\mathrm{B}}+0 \mathrm{P}=100$
$\sum \mathrm{M}_{\mathrm{A}}=0$
$\therefore \mathrm{P}\left(\frac{20}{100}\right)+100\left(\frac{8}{100}\right)-\mathrm{N}_{\mathrm{B}}\left(\frac{40}{100}\right)-\mu \mathrm{N}_{\mathrm{B}}\left(\frac{16}{100}\right)=0$
$\therefore 0 \mathrm{~N}_{\mathrm{A}}-42.4 \mathrm{~N}_{\mathrm{B}}+20 \mathrm{P}=-800$
From (1), (2) and (3),
$\mathrm{N}_{\mathrm{A}}=96.58 \mathrm{~N}$
$\mathrm{N}_{\mathrm{A}}=22.78 \mathrm{~N}$
$\mathrm{P}=8.29 \mathrm{~N}$
For maximum value of P, FBD is,

For equilibrium,
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\therefore-\mu \mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}}+\mathrm{P}=0$
$\therefore-0.15 \mathrm{~N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}}+\mathrm{P}=0$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\therefore \mathrm{N}_{\mathrm{A}}-\mu \mathrm{N}_{\mathrm{B}}-100=0$
$\therefore \mathrm{N}_{\mathrm{A}}-0.15 \mathrm{~N}_{\mathrm{B}}+0 \mathrm{P}=100$
$\sum \mathrm{M}_{\mathrm{A}}=0$
$\therefore \mathrm{P}\left(\frac{20}{100}\right)+100\left(\frac{8}{100}\right)-\mathrm{N}_{\mathrm{B}}\left(\frac{40}{100}\right)+\mu \mathrm{N}_{\mathrm{B}}\left(\frac{16}{100}\right)=0$
$\therefore 0 \mathrm{~N}_{\mathrm{A}}-37.6 \mathrm{~N}_{\mathrm{B}}+20 \mathrm{P}=-800$
From (4), (5) and (6),
$\mathrm{N}_{\mathrm{A}}=109.62 \mathrm{~N}$
$\mathrm{N}_{\mathrm{A}}=64.14 \mathrm{~N}$
$\mathrm{P}=80.58 \mathrm{~N}$
\therefore The range of value of P for which equilibrium is maintained is from 8.29 N to 80.58 N
(b) A box of size $3 \times 4 \times 2 \mathrm{~m}$ is subjected to three forces as shown in fig. Find in vector form the sum of moments of the three forces about diagonal OB .
(06 marks)

Solution:

The three forces are given as
$\overline{\mathrm{F}_{\mathrm{DC}}}=20 \hat{i} \mathrm{kN}$
$\overline{\mathrm{F}_{\mathrm{GO}}}=-20 \hat{i} \mathrm{kN}$
$\overline{\mathrm{F}_{\mathrm{BF}}}=-60 \hat{j} \mathrm{kN}$
The unit vector along the direction OB is

$$
\begin{aligned}
\hat{\mathrm{OB}} & =\frac{(4-0) \hat{i}+(2-0) \hat{j}+(3-0) \hat{k}}{\sqrt{4^{2}+2^{2}+3^{2}}} \\
& =\frac{4 \hat{i}+2 \hat{j}+3 \hat{k}}{\sqrt{29}}
\end{aligned}
$$

The vector moment of force F_{DC} along OB is
$\overline{\mathrm{M}}=\left[\begin{array}{lll}\overline{\mathrm{OC}} & \mathrm{F}_{\mathrm{DC}} & \hat{\mathrm{OB}}\end{array}\right] \hat{\mathrm{OB}}$
$\overline{\mathrm{M}}=\left|\begin{array}{ccc}4 & 2 & 0 \\ 20 & 0 & 0 \\ \frac{4}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}}\end{array}\right| \hat{\mathrm{OB}}$
$\therefore \overline{\mathrm{M}}=-20\left(\frac{6}{\sqrt{29}}\right) \hat{\mathrm{OB}}$
$\overline{\mathrm{M}}=\frac{-120}{\sqrt{29}}\left[\frac{4 \hat{i}+2 \hat{j}+3 \hat{k}}{\sqrt{29}}\right]$
$\therefore \overline{\mathrm{M}}=-16.55 \hat{i}-8.28 \hat{j}-12.41 \hat{k}$

The vector moment of force F_{GO} along OB is
$\overline{\mathrm{M}}=\left[\begin{array}{lll}\overline{\mathrm{OG}} & \mathrm{F}_{\mathrm{GO}} & \hat{\mathrm{OB}}\end{array}\right] \hat{\mathrm{OB}}$
$\overline{\mathrm{M}}=\left|\begin{array}{ccc}4 & 0 & 0 \\ -20 & 0 & 0 \\ \frac{4}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}}\end{array}\right| \hat{\mathrm{OB}}$
$\therefore \overline{\mathrm{M}}=20\left(\frac{6}{\sqrt{29}}\right) \hat{\mathrm{OB}}$
$\overline{\mathrm{M}}=\frac{120}{\sqrt{29}}\left[\frac{4 \hat{i}+2 \hat{j}+3 \hat{k}}{\sqrt{29}}\right]$
$\therefore \overline{\mathrm{M}}=16.55 \hat{i}+8.28 \hat{j}+12.41 \hat{k}$

The vector moment of force F_{BF} along OB is
$\overline{\mathrm{M}}=\left[\begin{array}{lll}\overline{\mathrm{OB}} & \mathrm{F}_{\mathrm{BF}} & \hat{\mathrm{OB}}\end{array}\right] \hat{\mathrm{OB}}$
$\overline{\mathrm{M}}=\left|\begin{array}{ccc}4 & 2 & 3 \\ -20 & 0 & 0 \\ \frac{4}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}}\end{array}\right| \hat{\mathrm{OB}}$
$\therefore \overline{\mathrm{M}}=0 \mathrm{OB}$
.... $\{$ Since 2 rows of the matrix are equal $\}$
$\therefore \overline{\mathrm{M}}=0 \hat{i}+0 \hat{j}+0 \hat{k}$
(c) Two blocks A and B are separated by 10 m as shown in fig on 20° incline plane. If the blocks start moving, find the time t when the blocks collide and distance travelled by each block. Assume $\mu_{k}=0.3$ for block \mathbf{A} and block \mathbf{A} and plane and $\mu_{\mathrm{k}}=0.10$ for block B and plane.
(06 marks)

Solution:

The FBD is:

Let the time taken by the blocks to meet be t seconds
Let the distance travelled by block A be x m
$\therefore x=0+\frac{1}{2}\left(a_{A}\right) t^{2}$
.....(1), $a_{A}=$ Acceleration of block A

Hence, distance travelled by block B is
$x+10=0+\frac{1}{2}\left(a_{B}\right) t^{2}$
.....(2), $a_{B}=$ Acceleration of block B

From the FBD,
On block A,
mass of block $\mathrm{A}=m_{A}=\frac{600}{g}=\frac{600}{9.8}=61.22 \mathrm{~kg}$
$600 \cos \left(20^{\circ}\right)=\left(\mathrm{N}_{\mathrm{A}}\right)$
$\therefore \mathrm{N}_{\mathrm{A}}=563.82 \mathrm{~N}$
$600 \sin \left(20^{\circ}\right)-0.3 \mathrm{~N}_{\mathrm{A}}=m_{\mathrm{A}} a_{\mathrm{A}}$
$\therefore a_{A}=0.589 \mathrm{~m} / \mathrm{s}^{2}$
On block B,
mass of block $\mathrm{B}=m_{B}=\frac{200}{g}=\frac{200}{9.8}=20.41 \mathrm{~kg}$
$200 \cos \left(20^{\circ}\right)=\left(\mathrm{N}_{\mathrm{B}}\right)$
$\therefore \mathrm{N}_{\mathrm{B}}=187.94 \mathrm{~N}$
$200 \sin \left(20^{\circ}\right)-0.1 \mathrm{~N}_{\mathrm{B}}=m_{\mathrm{B}} a_{B}$
$\therefore a_{B}=2.43 \mathrm{~m} / \mathrm{s}^{2}$
By putting the values of a_{A} and a_{B} in equations (1) and (2),
$x=\frac{1}{2}(0.589) t^{2} \ldots .$. (3) and $\quad x+10=\frac{1}{2}(2.43) t^{2}$
Dividing equation (3) by (4),
$\frac{x}{x+10}=\frac{\frac{1}{2}(0.589) t^{2}}{\frac{1}{2}(2.43) t^{2}}$
$\therefore x=3.2 \mathrm{~m}$
From (3)
$\mathrm{t}=\sqrt{\frac{2(3.2)}{0.589}}=3.3 \mathrm{~s}$
The blocks collide after time= $\mathbf{3 . 3}$ seconds and the distance travelled by block A is 3.2 m and that by block B is $(\mathbf{3 . 2 + 1 0}) \mathbf{m}=\mathbf{1 3 . 2} \mathbf{~ m}$.

